
Emotional Engagement in the Early Years: The Science of Imaginative Learning

Laureate Professor Marilyn Fleer Monash University

Emotional Engagement in the Early Years

THE SCIENCE OF IMAGINATIVE LEARNING

Emotional Engagement in the Early Years

Laureate Professor Marilyn Fleer, Conceptual PlayLab

FLEER'S CONCEPTUAL PLAYWORLD

READ OUR LATEST STORIES ON MONASH LENS

HOME EDUCATORS FAMILIES RESEARCH

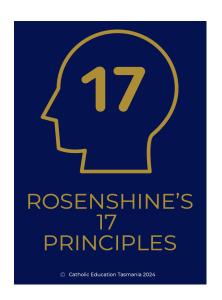
HARNESS THE POWER OF PLAY

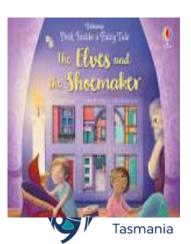
The Monash PlayLab has developed a new and effective way of teaching STEM to young children through play. It's called a Conceptual PlayWorld and it's all based on research by Laureate Professor Marilyn Fleer and her...

Acknowledgements

Acknowledgement of Australian Research Council & colleagues in Conceptual PlayLab

Foundational research that built our evidence-informed model of a Conceptual PlayWorld


Grants	Programmatic research over time: How to design motivating STEM learning through play	Theoretical outcome
DP 2005	The sociocultural construction of science learning. Learning of scientific concepts within situated playful encounters in early years context	Conceptual play
DP 2011	Conceptual play: Foregrounding imagination and cognition during concept formation in early yeas science education	Affective imagination
DP 2013	Affective imagination in scientific education: Exploring the emotional nature of scientific and technological learning and engaging children and teachers	Digital play
DP 2014	An investigation into the relations between imaginary situations and scientific abstractions in preschool digital play	Conceptual PlayWorlds (CPW)
LP 2018	Playworlds: Researching development of executive functions (working memory, emotion regulation, planning and cognitive flexibility)	Impact research changing practice
DP 2018	Conceptual PlayWorlds: Researching play, imagination and science teaching	PD model for multimodal learning of CPW
FL 2018- 24	This programmatic study is researching imagination in play and imagination in science, engineering and technology (and more) using intervention of a Conceptual PlayWorld	Intervention play research changing developmental conditions



The evidence and impact of a Conceptual PlayWorld model

EXPLORING EMOTIONS AND IMAGINATIVE LEARNING

THE SCIENCE BEHIND CONCEPTUAL PLAYWORLDS

CLARIFYING THE SCIENCE
OF LEARNING IN EARLY CHILDHOOD

CASE STUDY: THE ELVES AND THE SHOEMAKER

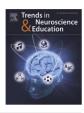
CO-TEACHING IN A
CONCEPTUAL PLAYWORLD

First: What is The Science of Learning (SoL)

Second: What does it mean for us in the Early Years?

First: What is The Science of Learning (SoL)

Second: What does it mean for us in the Early Years?



Contents lists available at ScienceDirect

Trends in Neuroscience and Education

Defining the Science of Learning: A scoping review

- ^a Centre for Research and Development in Learning, Nanyang Technological University, Singapore
- ^b Institute for Pedagogical Innovation, Research and Excellence, Nanyang Technological University, Singapore
- ^c School of Social Sciences, Nanyang Technological University, Singapore
- ^d National Institute of Education, Nanyang Technological University, Singapore
- ^e Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

ARTICLE INFO

Keywords:
Science of learning
Learning sciences
Educational neuroscience
Education
Scoping review

ABSTRACT

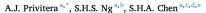
Background: Interest in research on the Science of Learning continues to grow. However, ambiguity about what this field is can negatively impact communication and collaboration and may inadequately inform educational training programs or funding initiatives that are not sufficiently inclusive in focus.

Methods: The present scoping review aimed to synthesize a working definition of the Science of Learning using Web of Science and ProQuest database searches.

Results: In total, 43 unique definitions were identified across 50 documents including journal articles, theses, conference papers, and book chapters. Definitions of the Science of Learning differed considerably when describing the fields thought to contribute to research on this topic.

Conclusions: Based on findings, we propose a working definition of the Science of Learning for discussion and further refinement: the scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

Trends in Neuroscience and Education 32 (2023) 100206


Contents lists available at ScienceDirect

Trends in Neuroscience and Education

journal homepage: www.elsevier.com/locate/tine

Defining the Science of Learning: A scoping review

- ^a Centre for Research and Development in Learning, Nanyang Technological University, Singapore
- ^b Institute for Pedagogical Innovation, Research and Excellence, Nanyang Technological University, Singapore
- ^c School of Social Sciences, Nanyang Technological University, Singapore
- ^d National Institute of Education, Nanyang Technological University, Singapore
 ^e Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

ARTICLEINFO

Keywords: Science of learning Learning sciences Educational neuroscience Education Scoping review

ABSTRACT

Background: Interest in research on the Science of Learning continues to grow. However, ambiguity about what this field is can negatively impact communication and collaboration and may inadequately inform educational training programs or funding initiatives that are not sufficiently inclusive in focus.

Methods: The present scoping review aimed to synthesize a working definition of the Science of Learning using Web of Science and ProQuest database searches.

Results: In total, 43 unique definitions were identified across 50 documents including journal articles, theses, conference papers, and book chapters. Definitions of the Science of Learning differed considerably when describing the fields thought to contribute to research on this topic.

Conclusions: Based on findings, we propose a working definition of the Science of Learning for discussion and further refinement: the scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

A.J. Privitera et al.

Trends in Neuroscience and Education 32 (2023) 100206

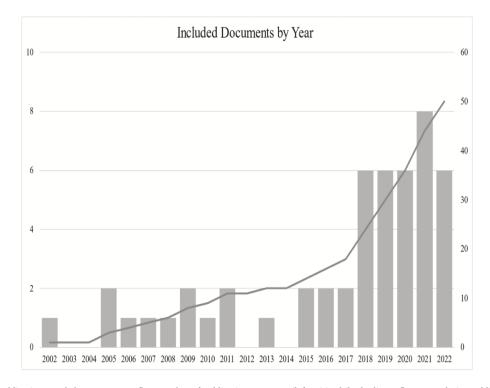
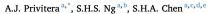


Fig. 2. Historical publication trends by year. Bars reflect number of publications per year (left axis) while the line reflects cumulative publications (right axis).

Trends in Neuroscience and Education 32 (2023) 100206

Contents lists available at ScienceDirect


Trends in Neuroscience and Education

journal homepage: www.elsevier.com/locate/tine

Defining the Science of Learning: A scoping review

- ^a Centre for Research and Development in Learning, Nanyang Technological University, Singapore
- ^b Institute for Pedagogical Innovation, Research and Excellence, Nanyang Technological University, Singapore
- ^c School of Social Sciences, Nanyang Technological University, Singapore
- d National Institute of Education, Nanyang Technological University, Singapore
- ^e Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

ARTICLEINFO

Keywords:
Science of learning
Learning sciences
Educational neuroscience
Education
Scoping review

ABSTRACT

Background: Interest in research on the Science of Learning continues to grow. However, ambiguity about what this field is can negatively impact communication and collaboration and may inadequately inform educational training programs or funding initiatives that are not sufficiently inclusive in focus.

Methods: The present scoping review aimed to synthesize a working definition of the Science of Learning using Web of Science and ProQuest database searches.

Results: In total, 43 unique definitions were identified across 50 documents including journal articles, theses, conference papers, and book chapters. Definitions of the Science of Learning differed considerably when describing the fields thought to contribute to research on this topic.

Conclusions: Based on findings, we propose a working definition of the Science of Learning for discussion and further refinement: the scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

A.J. Privitera et al. Trends in Neuroscience and Education 32 (2023) 100206

Table 4Fields contributing to the Science of Learning over time.

Field	2006	2007	2009	2011	2015	2016	2017	2018	2019	2020	2021	2022	Total
Anthropology													19%
Behavioral Economics													11%
Cognitive Psychology													37%
Cognitive Science													37%
Computer Science													11%
Developmental Psychology													7%
Developmental Science													4%
Education													37%
Educational Psychology													7%
Learning Sciences													7%
Linguistics													7%
Machine Learning													15%
Neuroscience													56%
Philosophy													7%
Psychology													44%
Social Psychology													7%
Sociology													22%
Other Fields													15%

Note: Darker shading corresponds to higher frequency of reference to a specific field in all definitions published in a given year. Total represents the total percentage of included definitions which reference a specific field.

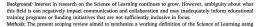
Trends in Neuroscience and Education 32 (2023) 100206

Contents lists available at ScienceDirect

Trends in Neuroscience and Education

journal homepage: www.elsevier.com/locate/tine

Defining the Science of Learning: A scoping review


A.J. Privitera a,*, S.H.S. Ng a,b, S.H.A. Chen a,c,d,e

- ^a Centre for Research and Development in Learning, Nanyang Technological University, Singapore
- b Institute for Pedagogical Innovation, Research and Excellence, Nanyang Technological University, Singapor School of Social Sciences, Nanyang Technological University, Singapore
- ^d National Institute of Education, Nanyang Technological University, Singapore
 ^e Lee Kong Chian School of Medicine, Nanyang Technological University, Singapor

ARTICLEINFO

Keywords: Science of learning Learning sciences Educational neuroscience Education Scoping review

ABSTRACT

Web of Science and ProQuest database searches.

Results: In total, 43 unique definitions were identified across 50 documents including journal articles, theses,

Results: In total, 43 unique definitions were identified across 50 documents including journal articles, theses, conference papers, and book chapters. Definitions of the Science of Learning differed considerably when describing the fields thought to contribute to research on this topic.

Conclusions: Based on findings, we propose a working definition of the Science of Learning for discussion and further refinement: the scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

Science of Learning: The scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

Applied Developmental Science

ISSN: 1088-8691 (Print) 1532-480X (Online) Journal homepage: www.tandfonline.com/journals/hads20

Implications for educational practice of the science of learning and development

Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher

To cite this article: Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher (2020) Implications for educational practice of the science of learning and development, Applied Developmental Science, 24:2, 97-140, DOI: 10.1080/10888691.2018.1537791

Applied Developmental Science

ISSN: 1088-8691 (Print) 1532-480X (Online) Journal homepage: www.tandfonline.com/journals/hads20

Implications for educational practice of the science of learning and development

Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher

To cite this article: Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher (2020) Implications for educational practice of the science of learning and development, Applied Developmental Science, 24:2, 97-140, DOI: 10.1080/10888691.2018.1537791

Figure 1. SoLD principles of practice.

First: What is The Science of Learning (SoL)

Second: What does it mean for us in the Early Years?

THE SCIENCE OF LEARNING IN EARLY CHILDHOOD EDUCATION

BRAIN DEVELOPMENT

- Experiences drive brain development
- Rapid growth in first few years
- Foundation for future learning

ACTIVE LEARNING

- Engaging, hands-on activities
- Curlosity and exploration
- Supports brain connections

ADULT INTERACTION

- Warm, responsive relationships
- Language-rich environment
- Guidance and support

ENVIRONMENT

- Safe and nurturing setting
- Rich in opportunities for play
- Stimulating and inclusive

Figure 1. SoLD principles of practice.

Table 1. Practices aligned with the science of learning and development.

I. Supportive Environment			II. Productive Instructional Strategies		
 Structures for Effective Caring Small schools Small class size Advisories Block scheduling Looping Teaching teams Longer grade spans 	 Classroom Learning Communities Intentional community-building Cultural competence Identity safety Consistent routines 	Connections among staff and families Relational trust Staff collaboration Home visits Regular parent conferences Authentic family engagement	Building on prior experience Teaching to readiness Personalization Collaborative learning Cognitive supports	Conceptual understanding & Motivation Conceptual map of the domain Inquiry + explicit instruction Motivating tasks with skillful scaffolding Interest-driven learning	Learning how to learn Teaching metacognition + learning strategies Formative feedback, practice & revision Mastery-oriented performance assessment
III. Social and Emotional Development Integration of Social Emotional Skills	Development of Habits & Mindsets	Educative & Restorative Behavioral Supports	IV. System of Supports Multi-tiered systems of support (MTSS)	Coordinated access to integrated services	Extended learning opportunities
Teach intra- and inter-personal skills, Applied Developmental Science ISSN: 1088-8691 (Print) 1532-480X (Online) Journal homepage: www.tandfe	e of the	 Teach students behavioral skills & responsibility Cultivate community contributions Repair harm by making amends 	 Tier 1: Use universal designs for learning and knowledge of child development Tier 2: Diagnostically identify additional services needed Tier 3: Provide intensive interventions 	 Wraparound health, mental health and social services Community partnerships Family & community engagement 	 Before & after school enrichment, mentoring, and academic support Summer learning opportunities Tutoring

Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher

To cite this article: Linda Darling-Hammond, Lisa Flook, Channa Cook-Harvey, Brigid Barron & David Osher (2020) Implications for educational practice of the science of learning and development, Applied Developmental Science, 24:2, 97-140, DOI: 10.1080/1088691.2018.1537791

Discussion paper

Play-based learning with intentionality

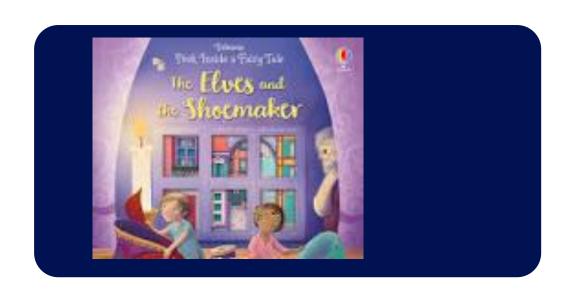
April 2025 | Updated May 2025

Science of Learning: The scientific study of the underlying bases of learning with the goal of describing, understanding, or improving learning across developmental stages and diverse contexts.

An example from Australian Education Research Organisation (2025):

Intentional educators and teachers are critical to maximising all children's opportunities for learning and development

Active decision-making and a repertoire of learning and teaching strategies are required to maximise children's outcomes


Foundational beliefs, knowledge and attitudes enable and impact educator and teacher intentionality within play-based learning

Gaps exist in the evidence base on intentional teaching

Science of Learning in the early years. Implications for educators/teachers:

Teaching Principle	Key Focus
Intentional teaching embedded in play and daily routines	Use planned learning opportunities naturally within play and everyday activities so they feel relevant and engaging.
Build warm, trusting relationships	Establish emotional security and a strong sense of belonging as the foundation for learning.
Introduce concepts within meaningful, real-world contexts	Link new ideas to situations and experiences children encounter in daily life.
Integrate STEM, literacy, and arts meaningfully	Blend different areas of learning in ways that connect to the child's understanding and interests.
Observe and assess learning holistically	View development across cognitive, social, emotional, and physical domains to guide next steps.

PRACTICE EXAMPLE

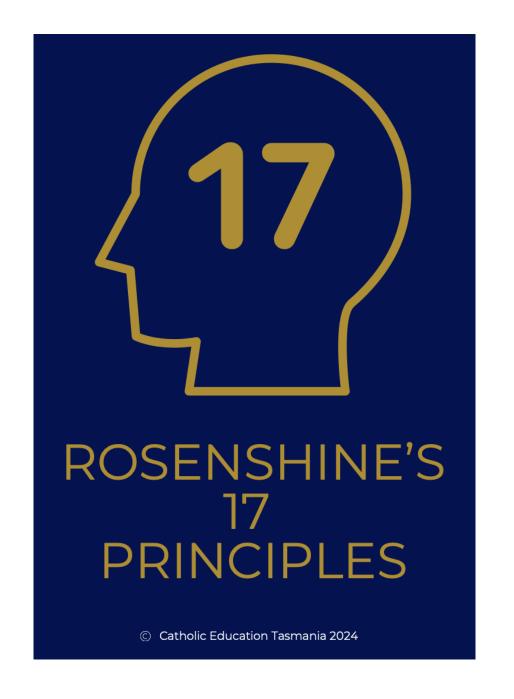
Second: What does it mean for us in the Early Years?

Deans for Impact (2015). The Science of Learning. Austin, TX: Deans for Impact.

Linking with
Tasmania... in the
context of the Deans of
Education Report

12 AMERICAN EDUCATOR | SPRING 2012

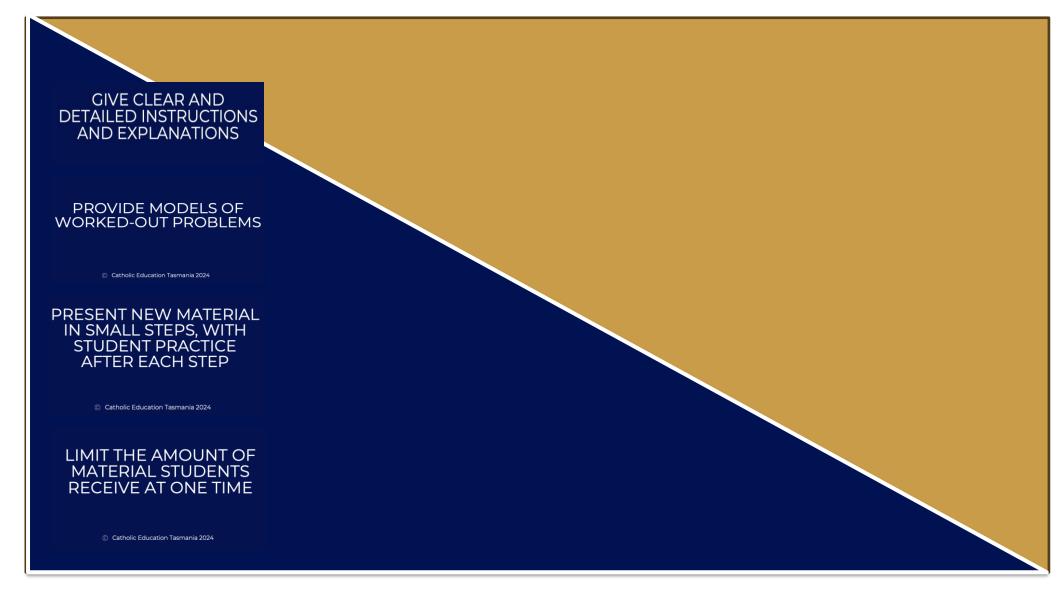
Linking with Tasmania... Rosenshine's principles of instruction

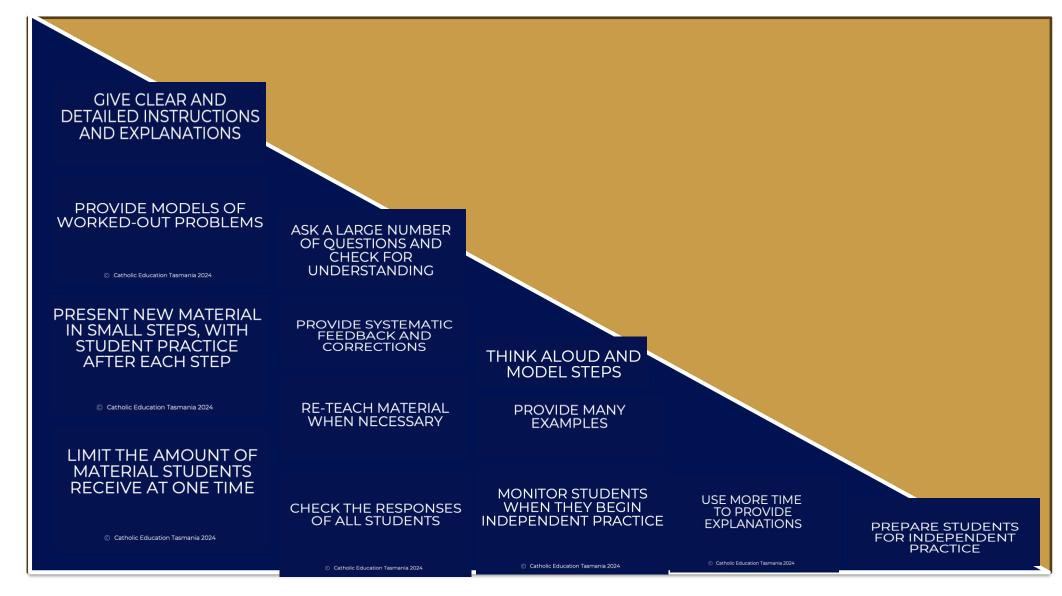

17 Principles of Effective Instruction

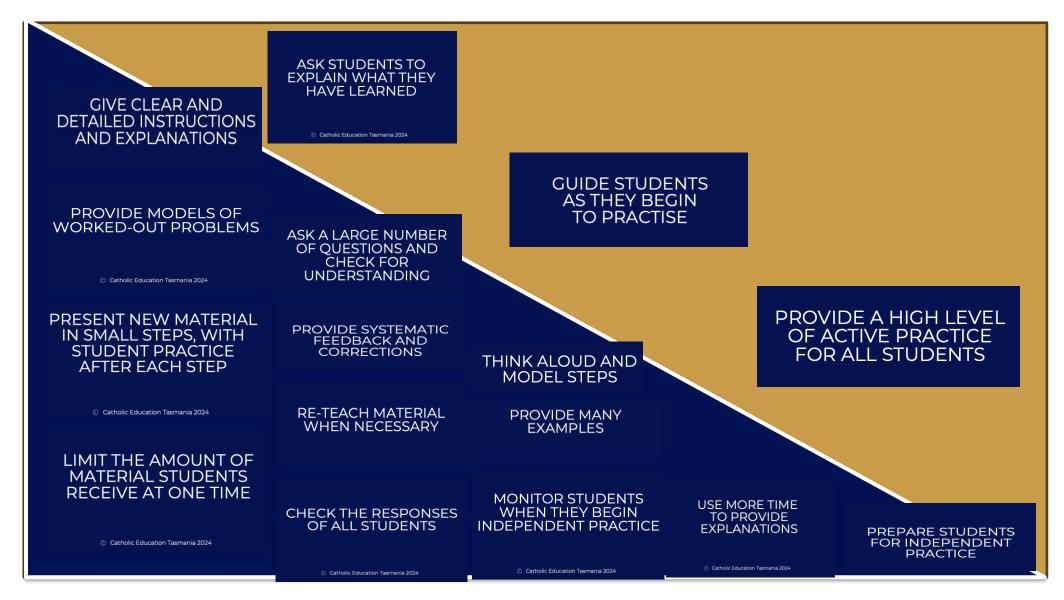
The following list of 17 principles emerges from the research discussed in the main article. It overlaps with, and offers slightly more detail than, the 10 principles used to organize that article.

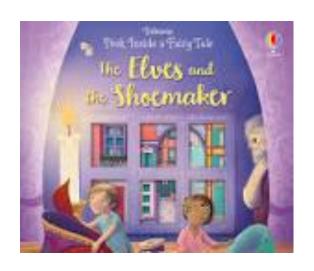
- Begin a lesson with a short review of previous learning.
- Present new material in small steps with student practice after each step.
- Limit the amount of material students receive at one time.
- Give clear and detailed instructions and explanations.
- Ask a large number of questions and check for understanding.
- Provide a high level of active practice for all students.
- Guide students as they begin to practice.
- Think aloud and model steps.
- Provide models of worked-out problems.
- Ask students to explain what they have learned.
- Check the responses of all students.
- Provide systematic feedback and corrections.
- Use more time to provide explanations.
- Provide many examples.
- Reteach material when necessary.
- Prepare students for independent practice.
- Monitor students when they begin independent practice.

-B.R.

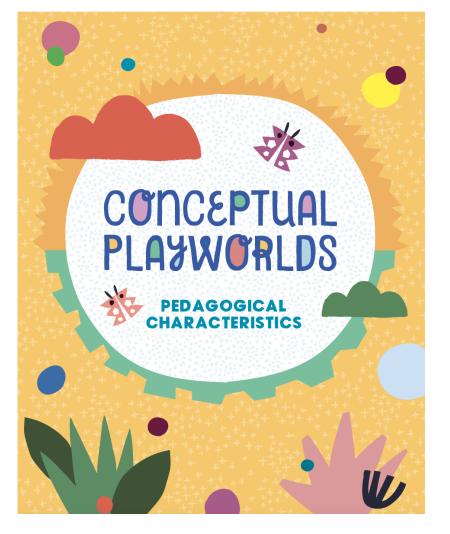

Linking with Tasmania...
Rosenshine's 17
principles of instruction
as presented in cards
and developed by
Catholic Education
Tasmania 2024




Student input


Teacher input

Teacher input ______ TARGET



Intentionality within play-based learning

Planning for success – using the proforma of a Conceptual PlayWorld for intentionality within play-based learning

Intentionality within play-based learning

Characteristic 1: Selecting a dramatic story

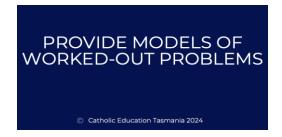
SoL concept/practice:

 Purposeful – motivating task with skillful scaffolding

SoL Early Years

 Integrate STEM, literacy, and arts in ways that make sense to the child. Key points to consider are that the story is engaging, dramatic, adventurous and one that builds empathetic responses to the characters.

BEGIN EACH LESSON WITH A SHORT REVIEW OF PREVIOUS LEARNING


© Catholic Education Tasmania 2024

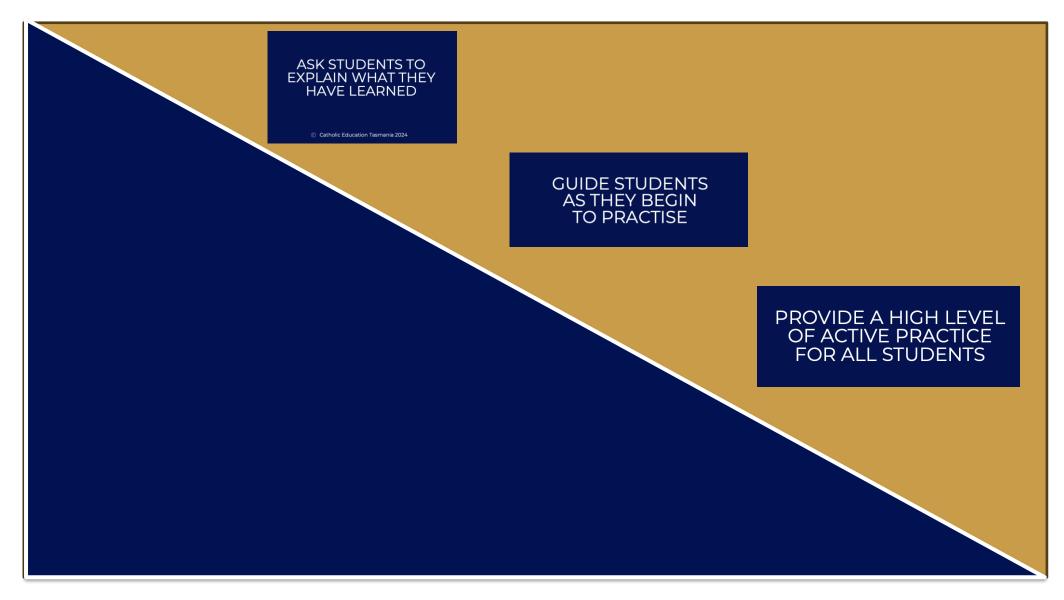
The story plot should
set the scene for a
Conceptual PlayWorld
by encouraging STEM
related problems and provide
for additional characters
to be introduced
as needed.

The motivated conditions for emotional imagination

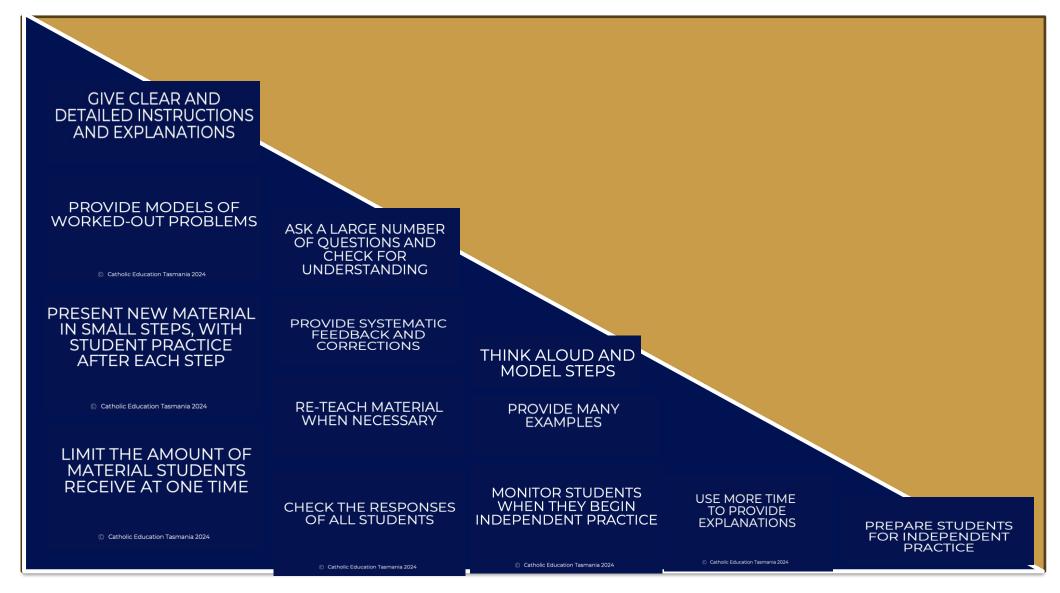
Characteristic 2: Designing an imaginary play space

SoL concept/practice:

Interest-driven learning


SoL Early Years

 Build warm, trusting relationships to form the foundation for learning. Intentionality within play-based learning


DESIGNING A SPACE FOR THE CONCEPTUAL PLAYWORLD

Design a space for your Conceptual PlayWorld. This may be the indoor or outdoor environment. Offer the children a range of activity settings to invite child-initiated play for further exploration and development of the plot and opportunities to represent their ideas and understandings. For example, 3-dimensional modelling, drawing, design stations and assorted fabric of differing textures, blocks and soft toys suitable for infants and toddlers.

The motivated conditions for emotional imagination

Teacher input _____ TARGET

Teacher input ______ TARGET

SoL concept/practice:

Interest-driven learning

SoL Early Years

 Build warm, trusting relationships to form the foundation for learning.

Characteristic 3: Entering and exiting routine

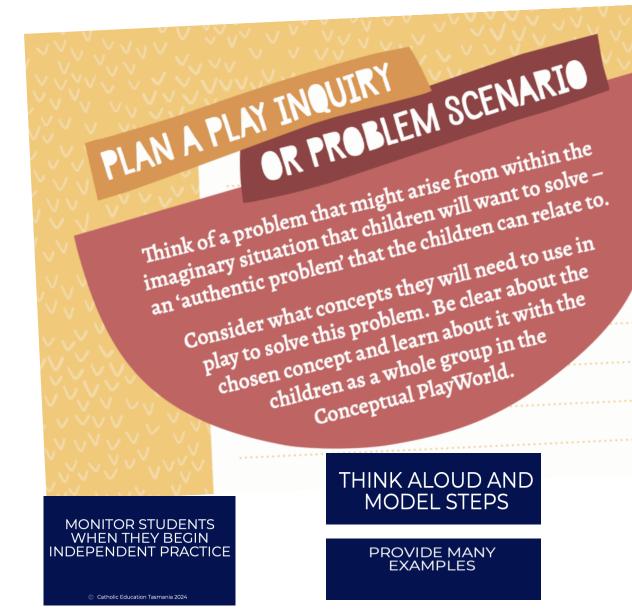
GIVE CLEAR AND DETAILED INSTRUCTIONS AND EXPLANATIONS ENTERING AND EXITING Children and educators choose characters from the story and plan a routine to signal that the whole group will be in the same imaginary situation. Select a routine to enter the Conceptual PlayWorld. Examples of routines could be aural, visual, or may involve passing through a special door, tunnel or archway, signifying the time to enter and exit the Conceptual PlayWorld.

Intentionality within play-based learning

The motivated conditions for emotional imagination

Intentionality within play-based learning

Characteristic 4: Planning the play problem


ASK A LARGE NUMBER OF QUESTIONS AND CHECK FOR UNDERSTANDING

SoL concept/practice:

Inquiry and explicit teaching

SoL Early Years:

- Use intentional teaching embedded in play and daily routines
- Concepts introduced within meaningful, real-world contexts.

It is through initially building rich knowledge, that opportunities for creative endeavours emerge

The Elves and the Shoemaker play problem– "The factory burnt down!"

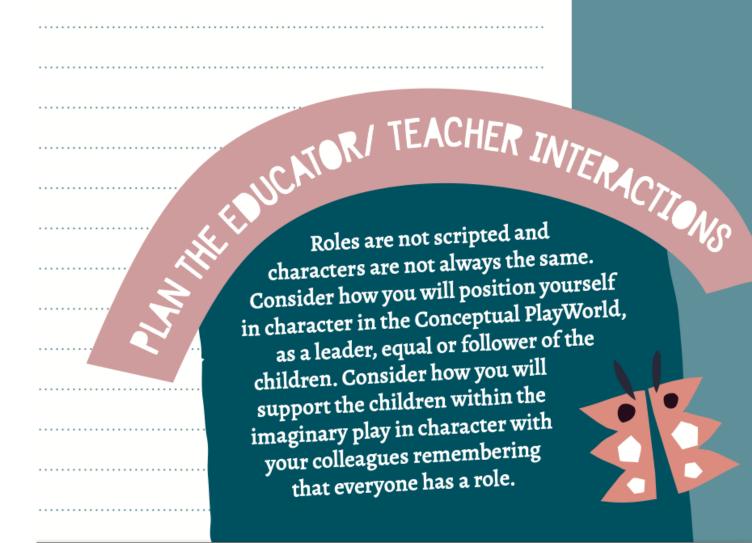
STEM concepts are:

- Engineering processes (imagining, designing, blueprint, materials, evaluation)
- Design For Manufacturing (DFM)
- Lean Manufacturing

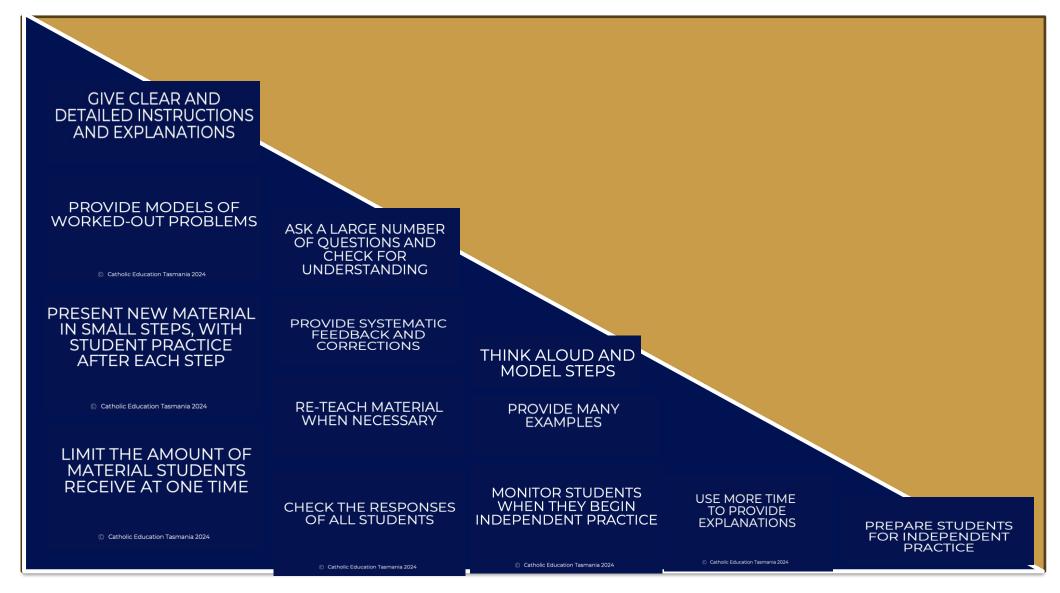
Conceptualising an engineering profession:

- Different types of engineers
- What is common about engineers
- The day in the life of an engineer

It is through initially building rich knowledge, that opportunities for creative endeavours emerge

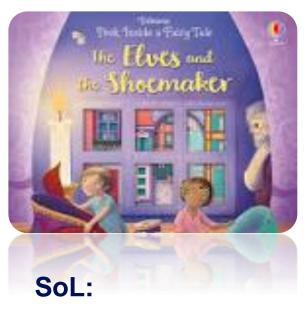

Characteristic 5: Planning educator and teacher role and interactions

SoL concept/practice:


 Motivating tasks with skilled scaffolding

SoL Early Years:

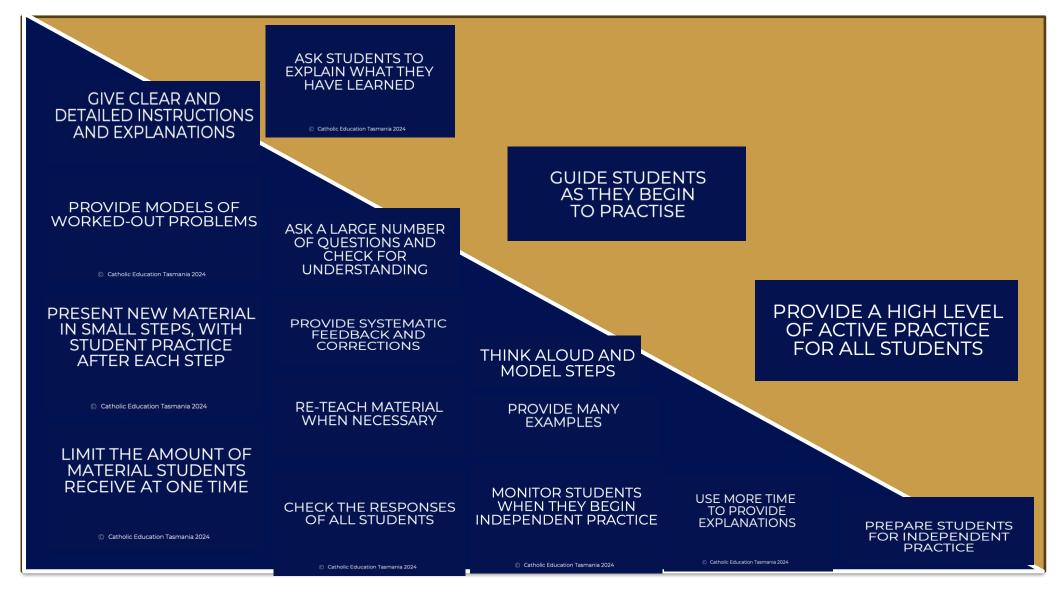
Observe and assess learning holistically



Co-teaching approach to conceptually resource the program

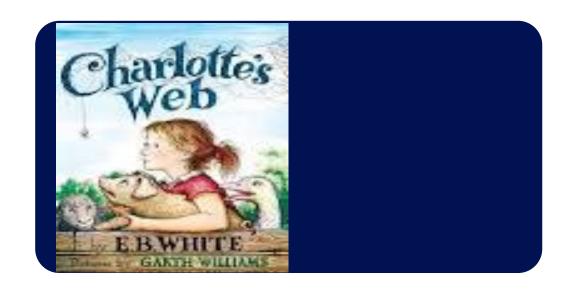
Teacher input ______ TARGET

LET'S STUDY THIS PRACTICE EXAMPLE FROM THE PERSPECTIVE OF: THE SCIENCE OF IMAGINATIVE LEARNING:


- Inquiry and explicit teaching
- Motivating tasks with skilled scaffolding
- Purposeful conceptual understanding and motivation
- Interest-driven learning

CPW:

- Purposeful planning (5 characteristics)
- Dramatic and imaginative
- Intentional teaching within the motivated conditions of play activity
- It is through initially building rich knowledge, that opportunities for creative endeavours emerge
- Co-teaching approach to conceptually resource the program

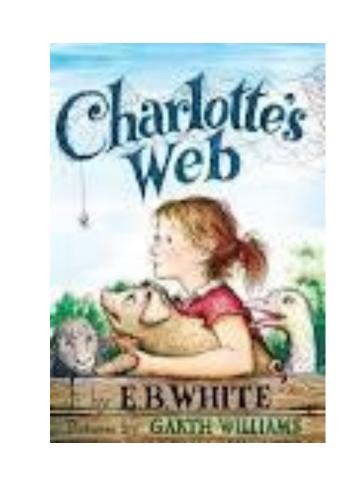

Australian Education Research Organisation (2025):

- Teaching that has a purpose or reason behind it.
- Intentional teaching can include pre-planned and adult-led learning
- Spontaneous opportunities where educators and teachers respond to 'teachable moments' that align with their intentions.
- It may also mean making deliberate decisions about when to guide play and when to step back from and observe play experiences.

Teacher input ______ TARGET

PRACTICE EXAMPLE

Second: What does it mean for us in the Early Years?

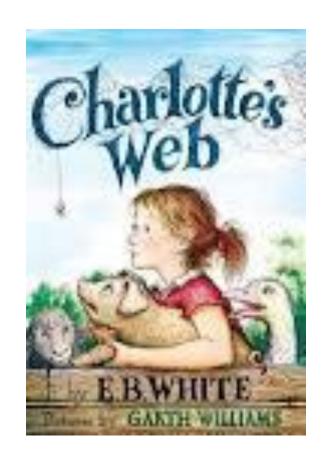

ntentional teaching embedded in play and daily routines

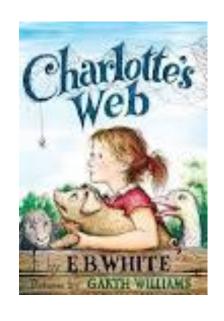
Build warm, trusting relationships

ntroduce concepts within meaningful, real-world contexts

ntegrate STEM, literacy, and arts meaningfully

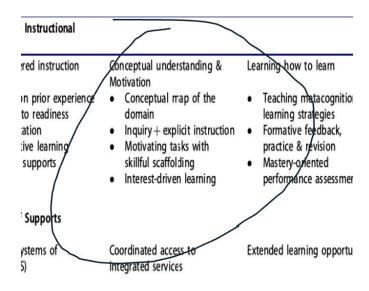
Observe and assess learning holistically




ONE EXAMPLE OF A CONCEPTUAL PLAYWORLD:

- Story of (Charlotte's Web)
- 2. Room turns into (Wilbur's farm)
- 3. Entry through (the door into the imaginary world of Wilbur's farm)
- 4. Play problem (Wilbur didn't like his pig stye and the children designed new home for him; Caring for Wilbur)
 - 1. Concept: Science living things
 - Concept: Technologies Designing, making, appraising/evaluating
- 5. The teachers are play partners (with the Year 5 children who visited as characters from the storybook)

What is the play problem? "Caring for Wilbur. He didn't like his pig stye and the children designed a new home for him"

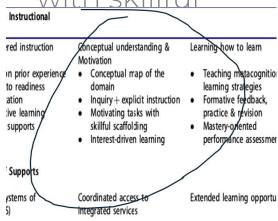

Play problem creates motivating conditions

- Concept: Science living things
- Concept: Technologies Designing, making, appraising/evaluating

Charlottes Web

SoL:

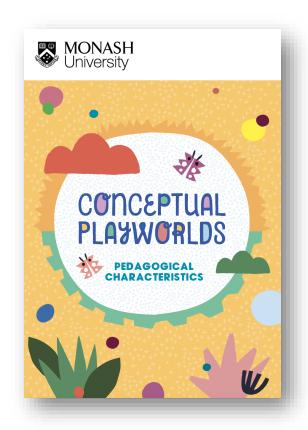
Inquiry and explicit teaching


Australian Education Research Organisation (2025):

- To have an intention means to have a purpose or reason for doing something.
- Intentional teaching is, therefore, teaching that has a purpose or reason behind it.

Charlottes Web

SoL:


- Inquiry and explicit teaching
- Purposeful –
 motivating task
 with skillful

Australian Education Research Organisation (2025):

- Intentional teaching can include pre-planned and adult-led learning experiences
- As well as spontaneous opportunities where educators and teachers respond to 'teachable moments' that align with their intentions.
- It may also mean making deliberate decisions about when to guide play and when to step back from and observe play experiences.

Once planned using the 5 characteristics, the implementation is dynamic

CONCEPTUAL PLAYWORLDS

Pedagogical Characteristics

DRAMATIC **AND ENGAGING TO** MOTIVATE THE CHILDREN

WHAT IS THE

PROBLEM TO

BE SOLVED?

2 & 3

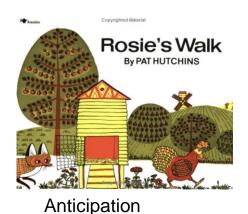
ALL IN THE **IMAGINARY** SPACE **TOGETHER**

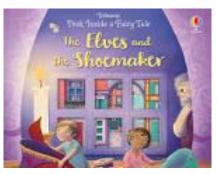
EXPLORATION OF CONCEPTS THROUGH **IMAGINARY PLAY**

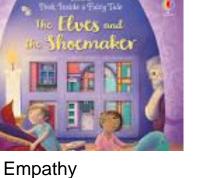
HOW WILL COLLEAGUES?

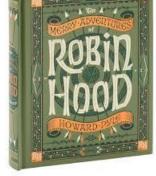
WHAT IS

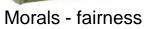
PROBLEM?

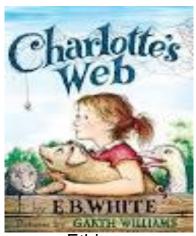



© Catholic Education Tasmania 2024


LIMIT THE AMOUNT OF **MATERIAL STUDENTS** RECEIVE AT ONE TIME


© Catholic Education Tasmania 2024

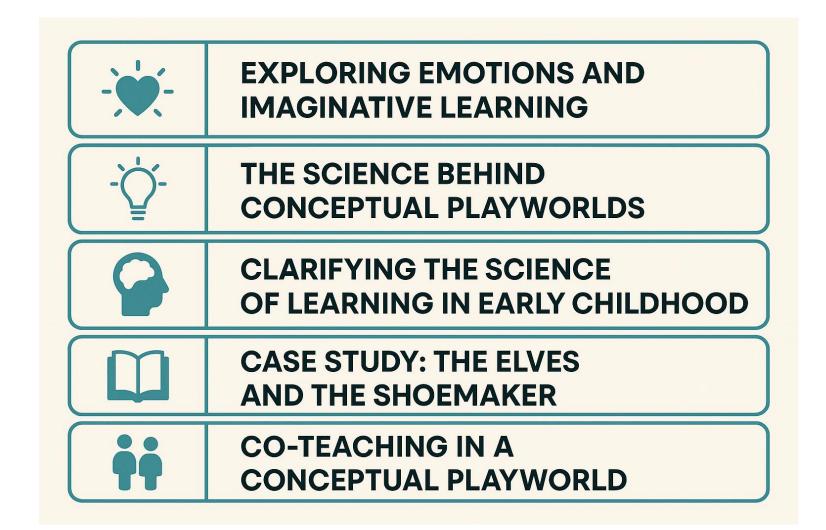

MONITOR STUDENTS WHEN THEY BEGIN INDEPENDENT PRACTICE © Catholic Education Tasmania 2024


Inclusion

© Catholic Education Tasmania 2024

PREPARE STUDENTS FOR INDEPENDENT PRACTICE

© Catholic Education Tasmania 2024



Ethics

POP-UP CONCEPTUAL **PLAYWORLD**

Levels of emotional engagement

COMPLEX CONCEPTUAL **PLAYWORLD**

Questions?

